Home  ·  Shop Online  ·  Post RFQ

Stud Bolt for Flanges (ASME B16.5)

Share on whatsapp
Share on telegram
Share on linkedin
Share on facebook
Share on twitter
Share on print
Share on email

Table of Contents

What is a stud bolt? Stud bolts for flanges consist of a fully threaded steel rod and two heavy hexagonal steel nuts. Stud bolts are inserted in the flange holes and tightened to seal a flanged joint. The number, the length, the diameter of the stud bolts required for a flanged connection depend on the flanges type, diameter, and rating (as per the ASME flange bolt chart).

STUD BOLT AND NUTS

A stud bolt consists of one threaded steel rod and two (matching) hexagonal heavy steel nuts. Stud bolts and nuts are essential components of flanged joints, as they are key to seal flanged joints properly.

Stud bolts are available in multiple diameters and lengths combinations, metric and imperial, and in a variety of materials from carbon steel to alloy, stainless and nickel alloys (common grades are: ASTM A193 B7, L7, B8, B8M, B16, Alloy 20, Monel, Hastelloy, Inconel, 17-4PH, titanium, etc.). These grades are discussed below in this article.

The material of the hex steel nuts shall match the material of the threaded rod (generally, stud materials ASTM A193 match with nuts materials ASTM A194).

The ASME B16.5 specification covers stud bolts and nuts for ASME flanges (number, the diameter and the length of required stud bolts, i.e “flange bolt chart”) by flange diameter, pressure class and face finish (RF, FF, RTJ).

STUD BOLT (THREADED ROD)

A stud is a threaded rod that is inserted into the holes of the mating flanges and then tightened, at both ends, by applying a specific torque to the steel nuts.

Stud bolt length (OAL/FTF)

The length of the stud can be measured either as overall length (i.e., “OAL”) or as “first useable thread to first useable thread” (i.e., “FTF”).

The FTF length can be calculated by subtracting a quarter of an inch to the OAL length, and it the standard stud length measurement for piping applications.

Flanges of different diameter and rating require stud of different lengths and diameters.

Stud bolt thread pitch and thread series

The stud is threaded according to the specifications set byASME B1.1.
The term “thread pitch” refers to the steepness of the angle of thread, which is measured in threads per inch.

The most used thread is the symmetrical thread pitch type with a “V-profile” (a 60-degree angle), as it is easier for the manufacturer to inspect compared to the non-symmetrical types.

Thread series relate to the diameter and pitch combinations, measured by the number of threads per inch (“TPI”) applied to a single diameter:

  • Coarse thread series (UNC/UNRC): UNC is the most common type for screws, bolts, and nuts. Coarse threads are used for threads in low strength materials such as iron, mild steel, copper and softer alloy, aluminum, etc. The coarse thread is also more tolerant of adverse conditions and it facilitates quick assembly
  • Fine thread series (UNF/UNRF): UNF is widely used for precision duties and when higher tensile strength is required (vs. the coarse thread series)
  • 8-Thread series (8UN) is the elective threading method for several ASTM standards including A193 B7, A193 B8/B8M, and A320. This series is widely used for diameters from one inch upwards

Stud bolts covered by the ASTM A193 or A320 Specifications use 8UN for all diameters 1” and above, which means that there are 8 threads per inch for these sizes. For any other material grade, the buyer shall specify the thread pitch unless it is given by the applicable ASTM norm.

 .       

 

NUTS FOR STUD BOLTS

To fasten a stud, two heavy hex steel nuts have to be bolted at the opposite ends of the rod.

The stud and the steel nuts join perfectly due to the friction existing between their respective threads, by a slight stretching of the bolt, and the compression of the two joined parts.

In the past, steel nuts had a squared head. Nowadays, hexagonal head nuts (featuring 6 sides instead of 4) have fully replaced the older shape as they ensure quicker and more effective screwing on the stud.

Nuts for petrochemical applications are tightened to a specific torque using special torque wrenches. The mechanical strength of the steel nut material shall be compatible with the strength of the mated bolt.

The dimensions and weights of heavy steel nuts for stud bolts are covered by the ASME B18.2.2 specification.

 

STUD VS BOLT

A common question is what is the difference between stud and bolts?

The answer is that a stud is a metal rod or shaft that features threads on both sides (as shown in the image above) and requires two heavy hexagonal nuts to be serrated; a bolt is a fastener with a “built-in” head nut at one side and that requires a single nut to be serrated.

 
Stud vs. bolt (stud on the left image, bolt on the right image)

 

STUD BOLT MATERIALS

The most common materials for stud bolts (for flanges) are ASTM A193 (grade B7, B8, B8M, B8T), ASTM A453 (grade 660), ASTM A320 (grade L7, L7M), and ASTM A182 (duplex and super duplex bolting). For aggressive fluids and environments, stud bolts can be coated with Xylan, Xylar and other materials.

ASTM A193 STUD BOLTS (HIGH-TEMP.)

The ASTM A193 specification covers alloy-steel and stainless steel stud bolts materials for high temperature or high-pressure service.

ASTM A193 stud bolts are available in national coarse (UNC) thread pitches, generally used in traditional applications, which means that there are 8 threads per inch (“thread per inch”) for rod diameters above 1 inch. B7 is the most common specification grade for stud bolts.

threaded stud bolt

The most common stud bolts materials covered by ASTM A193 are:

  • ASTM A193 B5
  • ASTM A193 B6
  • ASTM A193 B7: Alloy steel, AISI 4140/4142 quenched and tempered
  • ASTM A193 B7M
  • ASTM A193 B16
  • ASTM A193 B8: Class 1 Stainless steel, AISI 304, carbide solution treated.
  • ASTM A193 B8A
  • ASTM A193 B8M: Class 1 Stainless steel, AISI 316, carbide solution treated.
  • ASTM A193 B8MA
  • ASTM A193 B8T (SS 321)
  • ASTM A193 B8cl2: Class 2 Stainless steel, AISI 304, carbide solution treated, strain hardened
  • ASTM A193 B8Tcl2
  • ASTM A193 B8Mcl2: Class 2 Stainless steel, AISI 316, carbide solution treated, strain hardened

ASTM A193 Stud Bolts: Chemical Composition

Physical Element ASTM A193 grade B7 (AISI 4140) ASTM A193 grade B8 (AISI 304) ASTM A193 grade B8M (AISI 316)
Carbon 0.38 – 0.48% 0.08% max 0.08% max
Manganese 0.75 – 1.00% 2.00% max 2.00% max
Phosphorus, max 0.035% 0.045% 0.045%
Sulfur, max 0.040% 0.030% 0.030%
Silicon 0.15 – 0.35% 1.00% max 1.00% max
Chromium 0.80 – 1.10% 18.0 – 20.0% 16.0 – 18.0%
Nickel absent 8.0 – 11.0% 10.0 – 14.0%
Molybdenum 0.15 – 0.25% absent 2.00 – 3.00%

ASTM A193 Stud Bolts: Mechanical Properties

ASTM A193 Size Min Tensile Strength, in ksi Min Yield Strength, in ksi Min Elongation, in % RA % min Max HBW Max HRC
ASTM A193 grade B7 Up to 2-1/2 125 105 16 50 321 35
2-5/8 – 4 115 95 16 50
4-1/8 – 7 100 75 18 50
ASTM A193 grade B8 Class 1 All 75 30 30 50 223 35
ASTM A193 grade B8M Class 1 All 75 30 30 50 223 96
ASTM A193 grade B8 Class 2 Up to 3/4 125 100 12 35 321 35
7/8 – 1 115 80 15 35
1-1/8 – 1-1/4 105 65 20 35
1-3/8 – 1-1/2 100 50 28 45
ASTM A193 grade B8M Class 2 Up to 3/4 110 95 15 45 321 35
7/8 – 1 100 80 20 45
1-1/8 – 1-1/4 95 65 25 45
1-3/8 – 1-1/2 90 50 30 45

The material chosen for the threaded stud and the hex nuts should be compatible. Materials for bolting sets shall be selected based on the process’s working temperatures, as shown in the table below:

TEMPERATURE °C ( °F )
STUD BOLTS MATERIALS MIN. MAX.
CARBON STEEL -29 (-20) 300 (572)
A193 B7, L7 -73 (-100) 400 (752)
A193 B6 0 (32) 500 (932)
A193 B8 -200 (-325) 575 (1067)
A193 B16 0 (32) 520 (968)
A193 B17B -29 (-20) 650 (1202)
A913 Inconel 718 0 (32) 750 (1382)
A453 Gr. 660 -29 (20) 538 (1000)

Stud bolts can be produced also with “dual certification,” i.e. they conform to multiple sets of ASTM standards (A193 B7 stud bolts can meet the requirements of A320 L7; B8 and B8m stud bolts also typically conform to both A193 and A320).

ASTM A453 STUD BOLTS (HIGH-TEMP.)

The ASTM A453 specification covers standards for Grade 660 (Class A, B, C, and D), Grade 651 (Class A and B), Grade 662 (Class A and B), and Grade 665 (Class A and B) of bolting materials, with ten classes of yield strength ranging from 50 to 120 KSI [345 to 827 MPa], for use in high-temperature service such as fasteners, pressure vessels and flanges.

Bolting materials in ASTM A453 are covered rolled, forged, or hot-extruded bars, and also bolts, nuts, screws, washers, studs, and stud bolts.
Materials shall adhere to specified contents of carbon, manganese, phosphorus, sulfur, silicon, nickel, chromium, molybdenum, tungsten, titanium, columbium, aluminum, vanadium, boron, and copper.

According to ASTM A453 materials shall be subjected to tension, stress-rupture, and hardness tests. Materials shall conform to yield strength, tensile strength, elongation, reduction of area, Brinell hardness, and Rockwell hardness requirements.

Hardening and solution treatment requirements for each material class are also given. The most common grades under ASTM A453 are:

  • ASTM A453 660A
  • ASTM A453 660B
  • ASTM A453  660C
  • ASTM A453 660D

ASTM A453 Chemical Composition

ELEMENT ASTM A453 Grade 660 ASTM A453 Grade 651 ASTM A453 Grade 662 ASTM A453 Grade 665 ASTM A453 Grade 668
% % % % %
Carbon 0.08 max 0.28-0.35 0.08 max 0.08 max 0.08 max
Manganese 2.00 max 0.75-1.5 0.40-1.00 1.25-2.00 2.00 max
Phosphorus, max 0.040 max 0.040 max 0.040 max 0.040 max 0.040 max
Sulfur, max 0.030 max 0.030 max 0.030 max 0.030 max 0.030 max
Silicon 1.00 max 0.30-0.80 0.40-1.00 0.1-0.80 1.00 max
Nickel 24.0-27.0 8.0-11.0 24.0-28.0 24.0-28.0 17.5-21.5
Chromium 13.5-16.0 18.0-21.0 12.0-15.0 12.0-15.0 13.5-16.0
Molybdenum 1.00-1.50 1.00-1.75 2.0-3.50 1.25-2.25 1.50 max
Tungsten 1.00-1.75
Titanium 1.9-2.35 0.1-0.35 1.80-2.10 2.70-3.30 2.20-2.80
Columbium * 0.25-0.6
Aluminum 0.35 max 0.35 max 0.25 max 0.50 max
Vanadium 0.10-0.50 0.50 max
Boron 0.001-0.010 0.001-0.010 0.01-0.07 0.001-0.010
Copper 0.50 max 0.50 max 0.25 max

ASTM A453 Stud Bolts: Mechanical Properties

ASTM A453 Grade Class Tensile, Mpa Yield, Mpa Elong. %, min RA %, min
ASTM A453 Grade 660 A, B , & C 895 min 585 min 15 18
  D 895 min 725 min 15 18
ASTM A453 Grade 651 A 690 min 485 min 18 35
415 min
  B 655 min 415 min 18 35
345 min
ASTM A453 Grade 662 A 895 min 585 min 15 18
  B 860 min 550 min 15 18
ASTM A453 Grade 665 A 1170 min 830 min 12 15
  B 1070 min 830 min 12 15
ASTM A453 Grade 665 A & B 895 min 858 min 15 18

ASTM A453 Stud Bolts: Heat Treatments Requirements

ASTM A453 Class Solutiona Treatment Hardening Treatment
660 A 1650 +/- 25 °F [900 +/-14 °C], hold 2 h, min and liquid quench 1325 +/- 25 °F [720 +/- 14 °C] 16h, air cool
B 1800 +/- 25 °F [980 +/-14 °C], hold 1 h, min and liquid quench 1325 +/- 25 °F [720 +/- 14 °C] 16h, air cool
C 1800 +/- 25 °F [980 +/-14 °C], hold 1 h, min and oil quench 1425 +/- 25 °F [775 +/- 14 °C] hold 16h, air cool followed by 1200 +/- 25 °F [650 +/- 14 °C], hold 16h, air cool
D 1650 +/- 25 °F [900 +/-14 °C], hold 2 h, min and liquid quench OR 1325 +/- 25 °F [720 +/- 14 °C] hold 16h, air cool followed by 1200 +/- 25 °F [650 +/- 14 °C], hold 16h, air cool
if necessary to achieve properties, second age : 1200 +/- 25 °F [650 +/- 14 °C] hold 16h, air cool
1800 +/- 25 °F [980 +/-14 °C], hold 1 h, min and liquid quench
651 A hot-cold worked at 1200 °F[650] min with 15% min reduction in cross-sectional area, stress-relief anneal at 1200 °F [650 °C] min or 4h, min
B hot-cold worked at 1200 °F[650] min with 15% min reduction in cross sectional area, stress-relief anneal at 1350 °F [730 °C] min or 4h, min
662 A 1800 +/- 25 °F [980 +/-14 °C], hold 1 h, min and liquid quench 1350 to 1400 °F [730 to 760 °C], hold 20h, furnace cool to 1200 +/- 25 °F [650 +/- 14 °C], hold 20h, air cool
B 1950 +/- 25 °F [1065 +/-14 °C], hold 2 h, min and liquid quench 1350 to 1400 °F [730 to 760 °C], hold 20h, furnace cool to 1200 +/- 25 °F [650 +/- 14 °C], hold 20h, air cool
665 A 1800 +/- 25 °F [980 +/-14 °C], hold 3 h, min and liquid quench 1350 to 1400 °F [730 to 760 °C], hold 20h, furnace cool to 1200 +/- 25 °F [650 +/- 14 °C], hold 20h, air cool
B 2000 +/- 25 °F [1095 +/-14 °C], hold 3 h, min and liquid quench 1350 to 1400 °F [730 to 760 °C], hold 20h, furnace cool to 1200 +/- 25 °F [650 +/- 14 °C], hold 20h, air cool
668 A 1650 +/- 25 °F [900 +/-14 °C], hold 2 h, min and liquid quench 1325 +/- 25 °F [720 +/- 14 °C] 16h, air cool
B 1800 +/- 25 °F [980 +/-14 °C], hold 1 h, min and liquid quench 1325 +/- 25 °F [720 +/- 14 °C] 16h, air cool

A453 Stud Bolts: Time to Rupture and Elongation

Grade Class Test Temperature Stress, Min Time to Rupture Elongation
Deg F [ Deg C ] Ksi Mpa Min, h* Min %
660 A, B & C 1200 [650] 56 385 100 5
651 A & B 1200 [650] 40 275 100 5
662 A & B 1200 [650] 55 380 100 5
665 A 1200 [650] 75 515 100 3
B 1200 [650] 70 485 100 5

ASTM A320 STUD BOLTS (LOW-TEMP.)

The ASTM A320 specification covers alloy steel and Stainless Steel stud bolts materials for low-temperature service.

Each alloy under ASTM A320 shall conform to prescribed chemical requirements. The material, as represented by the tension specimens, shall conform to specific requirements in terms of tensile strength, yield strength, elongation, and hardness. The stud bolt material shall meet the prescribed impact energy absorption requirements and the target test temperature.

According to the ASTM A320 specification, manufacturers shall execute at least the following mechanical tests on the material: impact test, tension test, and hardness test.

The most common stud bolts materials under ASTM A320 are listed below (low-temperature service):

  • ASTM A320 L7: Alloy steel, AISI 4140/4142 Quenched and tempered 
  • ASTM  A320 L7M
  • ASTM A320 L43: Alloy steel, AISI 4340 Quenched and tempered 
  • ASTM A320 B8 Class 1: Stainless steel, AISI 304, carbide solution treated 
  • ASTM A320 B8A
  • ASTM A320 B8T
  • ASTM A320 B8TA
  • ASTM A320 B8C
  • ASTM A320 B8M: Class 1 Stainless steel, AISI 316, carbide solution treated 
  • ASTM A320 B8MA
  • ASTM A320 B8cl2: Stainless steel, AISI 304, carbide solution treated, strain hardened 
  • ASTM A320 B8Mcl2: Stainless steel, AISI 316, carbide solution treated, strain hardened

ASTM A320 Stud Bolts: Mechanical Properties

ASTM A320 Grade Diameter Tensile, KSI, min Yield, KSI, min Charpy Impact 20-ft-LBF @ temp Elong, %, min RA, %, min
ASTM A320 Grade L7 Up to 212 125 105 -150° F 16 50
ASTM A320 Grade L43 Up to 4 125 105 -150° F 16 50
ASTM A320 Grade B8 Class 1 All 75 30 N/A 30 50
ASTM A320 Grade B8M Class 1 All 75 30 N/A 30 50
ASTM A320 Grade B8 Class 2 Up to 34 125 100 N/A 12 35
78 – 1 115 80 N/A 15 35
118 – 114 105 65 N/A 20 35
138 – 112 100 50 N/A 28 45
ASTM A320 Grade B8M Class 2 Up to 34 110 95 N/A 15 45
78 – 1 100 80 N/A 20 45
118 – 114 95 65 N/A 25 45
138 – 112 90 50 N/A 30 45

ASTM A182 STUD BOLTS (Duplex and Super Duplex)

Duplex Steel Bolts

Chemical Composition:

C Mn Si P S Cr Mo Ni N
Duplex 2205
(S31803)
0.03
max
2.0
max
1.0
max
0.03
max
0.02
max
min: 21.0
max: 23.0
min: 2.5
max: 3.5
min: 4.5
max: 6.5
min: 0.08
max: 0.20
Duplex 2205
(S32205)
0.03
max
2.0
max
1.0
max
0.03
max
0.02
max
min: 22.0
max: 23.0
min: 3.0
max: 3.5
min: 4.5
max: 6.5
min: 0.14
max: 0.20

Mechanical Properties:

Grade Tensile Strength
ksi (min)
Yield Strength
0.2% ksi (min)
Elongation % Hardness (HB) MAX
2205 90 65 25 217

Physical Properties:

Density
lbm/in3
Electrical
Resistivity
mW•in
Thermal
Conductivity
(BTU/hr•ft•°F)
Heat
Capacity
BTU/lbm•°F
Electrical
Resistivity
(in x 10-6)
at 68°F 0.278 27.6 8.7 0.112
at 212°F 26.1 9.2 0.119 35.4
at 392°F 25.4 9.8 0.127 37.4
at 572°F 24.9 10.4 0.134 39.4

Super Duplex Bolts

Chemical Composition:

C Cr Ni Mo N Others
0.02 25 7 4 0.27 S=0.001

Mechanical Properties:

Ultimate Tensile Strength, ksi 16 min.
0.2% Offset Yield Strength 0.2%, ksi 80 min.
0.1% Offset Yield Strength 0.2%, ksi 91 min.
Elongation in 2 inches, % 15 min.
Hardness Rockwell C 32 max.
Impact Energy, ft.-lbs. 74 min.

Physical Properties:

Density lb/in3 0.28
Modulus of Elasticity psi x 106 29
The coefficient of Thermal Expansion x10-6/°F 7.2
68-212°F/°F
Thermal Conductivity Btu/h ft °F 8.7
Heat Capacity Btu/lb/°F 0.12
Electrical Resistivity W-in x 10-6 31.5

COATED STUD BOLTS

Stud bolts can be coated to increase the resistance to corrosion. The most common types of coatings for stud bolts are listed below:

  • Electro zinc plating
  • Electro cadmium plating
  • Hot dip galvanizing
  • PTFE Coating
  • Phosphate coating
  • Electroless nickel plating
  • Zinc-nickel coating
  • Aluminum coating
  • Silver coating
  • Zinc/Nickel by electrodeposition
  • Dacromet
  • Geomet

In addition, also XYLAN and Xylar coatings are available:

  • XYLAN 1070
  • XYLAN 1024
  • Xylar 1

Xylan and Xylar coatings for stud bolts have multiple advantages:

  • Lower frictions vs. uncoated bolts (CoF is as low as 0.02)
  • Increased wear resistance for the bolt even under extreme pressures.
  • Strong corrosion and chemical resistance in most demanding environments
  • Increased resistance to adverse weather conditions (such as extreme sunlight, salt-water exposure to chemicals)
  • Wider operating range in terms of temperature (from -420° to +550°F, i.e. -250° to 285°C).
  • Color coding for easier traceability
  • Pliability: Xylan coatings bend easily and repeatedly and do not break
  • Machinability: multiple Xylan coatings can be applied to the stud bolts
  • Strong adhesion to bolting materials

STUD BOLTS AND NUTS SELECTION (SERVICE vs. GRADE)

The material to use for stud bolts depends on multiple factors, the main ones are the material of the flanges and the pipeline design temperature:

DESIGN
TEMPERATURE
FLANGE MATERIAL STUD BOLT HEAVY HEX STEEL NUTS
-195° to 102°C ASTM A 182 Gr. F304, F304L, F316, F316L, F321, F347 A320 Gr. B8 Class 2 A194 Gr. 8A
-101° to -47°C ASTM A 350 Gr. LF3 A 320 Gr. L7 A 194 Gr. 7
-46° to -30°C ASTM A 350 Gr. LF2 A 320 Gr. L7 A 194 Gr. 7
-29° to 427°C ASTM A 105 A 193 Gr. B7 A 194 Gr. 2H
428° to 537°C ASTM A 182 Gr. F11, F22 A 193 Gr. B16 A 194 Gr. 2H
538° to 648°C ASTM A182 Gr. F11, F22 A 193 Gr. B8 Class 1 A 194 Gr. 8A
649° to 815°C ASTM A182 Gr. F304 H, F316 H A 193 Gr. B8M Class 1 A 194 Gr. 8A


ASTM stud bolts materials selection.pdf

Need an Offer?

Post your RFQ · Get Offers · Close Deals
GET OFFER

9 Responses

  1. Very informative blog. Studs are a headless version of bolts. They are either threaded from both ends or are fully threaded. Continuous threaded, tap end stud, double end stud, and flange stud are some studs that Fastener World offers.

  2. Hi Ma’am / Sir,

    Kindly submit your proposal CIF MANILA, PHILIPPINES for the following:

    ADDITIONAL SPECS TO BE FOLLOWED, SEE BELOW AND QUOTE CIF MANILA, PHILIPPINES

    THANKS.
    ROLLY/MANILA OVERSEAS INC.
    TEL;6328804227 FAXC:6328004172

    Include price and lead time.

    Thank you

    Regards,
    ROLLYMANILA OVERSEAS INC.
    Tel 63-2-88004227

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Share on linkedin
Share on facebook
Share on twitter
Share on whatsapp
Share on telegram
Share on print
Share on email

SHOP.PROJECTMATERIALS.COM

Buy Online!

ANSI Y-Strainers

Stock Delivery

EU Origin

 Factory Prices

 Top Quality

SIZES       ⅜” to 12″
RATINGS 150# · 300# · 600# · 800#
GRADES  Carbon · Stainless
ENDS        Flanged RF · BW · THD · SW